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Abstract

Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK
thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent
constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings.
A one-parameter memory surface is introduced to distinguish the "virgin" deformation and the
subsequent deformation process and to characterize the loading range effect. Cyclic softening is
characterized by the change of generalized plastic modulus. By the vanishing yield surface
assumption, a yield criterion is not needed and it is not necessary to consider loading and
unloading separately. The model is compared with experimental results and good agreement is

obtained.



1. Introduction

AS4/PEEK thermoplastic composite contains AS4 graphite fibers and thermoplastic matrix
PEEK (polyether ether ketone). Compared with other types of thermoplastic matrix, PEEK has
higher ductility, higher operating temperature and is unaffected by solvents. Due to the higher
ductility of the matrix, AS4/PEEK exhibits pronounced plasticity even at low stress levels.
Therefore, it is important to describe the plastic behavior of the composite. The study of cyclic
plasticity of the composite material is further motivated by applications in engineering structures
subjected to cyclic loads, or to cycles of temperature, which result in cyclic inelastic responses

and fatigue failure.

Isotropic hardening, which assumes that a yield surface expands isotropically during plastic
flow, gives good results for simple loading but contradicts the Bauschinger effect. Kinematic
hardening, one of most important concepts to account for loading history associated with change
of loading direction, was introduced by Ishlinskii [1] and Prager [2], and was improved by
Zieglar [3]. According to the kinematic hardening rule, the yield surface does not change its
initial form and orientation but translates in the stress space like a rigid body. A more complex
work-hardening model introducing deformation and rotation of yield surface was introduced by
Baltov and Sawczuk [4]. Phillips et al [5,6] proposed a model introducing the anisotropic

hardening and cross-hardening effects of the yield surface.

In the above models, emphasis was placed on how to describe the change of the yield surface
during plastic deformation little has been done as to how the work hardening plastic modulus
changes, which is essential to complex loading histories, such as cyclic loading history. To
describe the change of the work hardening plastic modulus, Eisenberg and Phillips [7]
generalized the bilinear approximation model proposed by Prager [8] to include nonlinear

hardening materials. They used accumulated plastic deformation in uniaxial reverse loading to



obtain a description of the material, which predicts the same value of plastic modulus at the
termination of plastic loading as that at the beginning of the reversed plastic loading. In order to
describe the transient stress-strain behavior, which is usually characterized by cyclic hardening
or softening, Eisenberg and Yen [9] demonstrated that the Ramberg-Osgood parameters (k, n)
may be considered to be cvcle-dependent. Dafalias and Popov [10] and Krieg [11] introduced
the concept of a bounding surface in the stress space which always encloses the loading surface.
A parameter defined by the relative position of the loading and the bounding surface and the

plastic work done during the most recent loading determines the value of the plastic modulus.

In a different approach, Mroz [12] introduced the concept of a "field of work hardening -
moduli". This field is defined by a configuration of surfaces of constant work hardening moduli
in the stress space. A stable cyclic stress-strain curve for Masing type material is determined by
calculation of the translation of surfaces. Hardening or softening behavior is achieved by
permitting one or more nested surface to expand or contract. He also proposed a new rule of
kinematic hardening whick: is different from those of Prager and Ziegler. In the multi-surface
approach, more models using two or more surfaces have been proposed by McDowell [13],

Tseng and Lee [14], Hashiguchi [15].

A few attempts have been made for the determination of inelastic-behavior of metal-matrix
composite for cyclic loading. Dvorak and Bahei-El-Din [16] proposed a micromechanical
model in which the elastic-plastic behavior of composite is described in terms of the constituent
properties, their volume fractions, and material constraints between the phases. The matrix was
assumed to be the Mises-type and to obey the Prager-Ziegler kinematic hardening rule. Dvorak
and Bahei-El-Din [17] also proposed a bimodal plasticity theory of fibrous composite materials.
According to this theory, the overall yield surface of composite is determined by two distinct

modes: the matrix-dominated mode and fiber-dominated mode.



Aboudi [18] derived an effective constitutive equation based on a high order continuum
theory with microstructure for the modeling of visco-plastic composite. The theory is
independent of yield criterion, loading and unloading conditions. The constitutive relations for a
single phase constituent are based on a generalization of Prandtl-Reuss flow rule. In the
evolution equation for the inelastic state variables that control plastic flow, it is assumed that part
of the rate of change is isotropic and remaining part varies according to the sign and orientation
of the current rate of deformation vector. This leads to a minimum of twelve components of the

internal state tensor which represents resistance to inelastic deformation.

As noted by Bahei-El-Din & Dvorak [19] and Johnson [20], The difficulties encountered in '
formulating micromechanical models lie in the facts that the in-situ constituent matrix properties
are different from those of the bulk matrix material and that 3-D elastic constants of the fiber are
difficult to measure. In the above studies [16-19], no experimental results for cyclic loading are

available for comparison and verification.

The present study aimed at experimental determination and theoretical modeling of inelastic
behavior of AS4/PEEK thermoplastic composite under cyclic loading. A series of tests of cyclic
loading on off-axis AS4/PEEK thermoplastic composite specimens were performed. A simple
rate-independent constitutive model was developed. Some basic features in this model are: yield
surface is one-parameter rype; deformation process is decomposed into virgin deformation,
which corresponds to inital loading and overloading, and non-virgin deformation, which
corresponds to subsequent loading within the previous maximum stress range which is defined
by a one-parameter type memory surface. Cyclic softening is achieved by the change of
generalized plastic modulus during plastic deformation. For further simplification, the vanishing
yield surface assumption was adopted. Good agreement between the experimental results and

model simulations was found.



2. Experiment
2.1. Experiment Procedure

The 15°, 30°, 45° anc 90° off-axis coupon specimens were cut from the 10-plied
unidirectional composite panel of which the thickness was 1.27+0.03 mm. The specimen length
was 228 mm, and the width was 25.4 mm. Flexible end tabs made of Flex Epoxy 103 and fiber-

glass knit were used to reduce the end effect due to extension-shear coupling [22].

To prevent the specimen from buckling under compression, an antibuckling apparatus was
designed and used in the cyclic loading tests. The apparatus shown in Fig. 1 was employed for -

compression test of off-axis specimens in [23]. It has the following properties:

o It allows the specimen to have a long effective specimen length in order to reduce the end

effect due to extension-shear coupling.

o The plane stress state of the specimen should not be affected. For this reason, the lateral

pressure on the specimen is kept low enough just to prevent buckling.

The effective specimen length allowed by the apparatus was 152 mm. The specimen was
supported by four steel guides. The lateral supporting force was exerted using six springs, and
could be adjusted to an appropriate value. In this study, 890 N of supporting force was chosen.
The corresponding normal stress due to the supporting force was about 0.23 MPa. In order to
minimize the surface friction between the specimen and the steel guides, a thin TX-1040 teflon-
coated fabric sheet was put between the specimen and the steel guide. The maximum friction
force between the specimen and the steel guide could be reduced to 195 N. The stress caused by

the friction force was negligible.



The uniaxial cyclic loading tests were performed using the closed-loop-servo hydraulic MTS
810 machine at room temperature (75°F). All tests were performed at a strain-controlled mode
at a constant strain rate € = 20 pe/sec. Longitudinal and transverse strains were measured by
strain gages mounted at the center of the specimen. The measured analog signals were
converted into digital signals which were stored and analyzed by an IBM-AT computer data

acquisition system.
2.2. Experimental Results

The experimentally determined apparent elastic moduli and Poison’s ratios of the off-axis
coupon specimens are listed in Table 1. The longitudinal stress-strain curves for the

15°, 30°, 45° and 90° off-axis coupon specimens are shown in Fig. 2-5, respectively.

It can be seen that the material is not Masing-type, and is slightly softened during first few
reversals. The stress-strain curves asymptotically approach hysteresis loops. These curves also
show that there is no well defined yield point, and the nonlinearity appears gradually, starting

near the beginning of the initial curve and of each reversal.

Loading Range Effect: To investigate the effect of loading range (plastic strain range under
strain control or load range under stress control) on the material response during reverse loading
and subsequent loading, three 30° off-axis specimens were cyclically loaded at strain ranges
Ag, =-0.49/0.49%, -0.69/0.70% and -0.89/0.89% respectively. The longitudinal stress-strain
curves are presented in Fig. 6. It can be seen that the shapes of the stress-strain curves are
dependent on the loading range, i.e., the larger the loading range, the softer the material

behaviors.



One 30° off-axis specimen was cyclicly loaded at Ag, = -0.57/0.60% for four cycles first,
then cyclicly loaded at Agy = -0.79/0.80%. The stress-strain curves are shown in Fig. 7. It can be
seen that additional softening occurs when the loading range increases. For comparison, one 30°
off-axis specimen was cyclicly loaded at Ag, = -0.79/0.80% for four cycles first, then cyclically
loaded at Ae, = -0.57/0.60%. The stress-strain curves are plotted in Fig. 8. It can be seen that

there is no apparent softening when the loading range is decreased.

3. A Plane Stress Constitutive Model for Cyclic Loading
3.1. Model Description

It has been demonstrated that the plastic properties of unidirectional composites such as
boron/aluminum and thermoplastic composites can be well characterized by a one parameter

plastic potential function [21-24]. Following a similar approach, we define the yield surface as
2f(cy; — o) — k2 =0 (1)
where f(o;; — o;) is a plastic potential function defined by
(o — %) = (022—022)" + 266(C12— 012 )’ 2)

in which l-axis and 2-axis refer to the fiber direction and the transverse direction, respectively,
(02, 0472) is the center cf the yield surface, and k specifies the size of the surface. In the
0y, and G, subspace, equation (1) represents an ellipse. The selection of this yield surface

implies that plastic deformation in the fiber direction is absent.



A material is called a virgin material if it has not been loaded or deformed after it is
manufactured. The deformation duﬁng the initial loading of a virgin material is called virgin
deformation. The deformation corresponding to the subsequent loading within the previous
maximum stress range is called non-virgin deformation. Once the subsequent loading exceeds
the previous maximum swess range (overloading), the deformation is also called virgin

deformaton.
The maximum stress range is defined by
2(03j) ~ Ginax =0 3)

where q,znax is the maximum value of 2f(c;;) = 0% + 23650%2. Henceforth, this surface will be
referred to as the memory surface corresponding to loading Qmax. In the virgin state, the
memory surface coincides with the yield surface initially. During initial loading, the memory
surface expands isotropically and the yield surface translates. During unloading and subsequent
reloading, the yield surface will translate within the memory surface. Once loading reaches the
memory surface and exceeds it (overloading), the memory surface will expand again with the
loading. Therefore, the virgin deformation corresponds to the expansion of the memory surface,
and the non-virgin deformation corresponds to the subsequent loading within the memory

surface.

The criterion for virgin deformation is given by

of(ci;)

2(0;))~qmax =0 and doy; 20 (4)

Gij
The reason for distinguishing virgin deformation from non-virgin deformation is that the
hardening properties are to be characterized differently with respect to virgin deformation and

non-virgin deformation. This distinction was also found to be necessary in some metals



[9-11, 13-14, 25]. A schematic representafion of the yield surface and memory surface is

shown in Fig. 9.

From Mroz’s rule of kinematic hardening [12], the motion of the yield surface is defined in
the direction from the current loading point s to the stress point s® on the memory surface where
the unit outward normal is the same as the unit outward normal to the yield surface at loading
point s. In case the yield surface is similar to the memory surface, the mathematical description

of the kinematic hardening is given by
d(lij = dGij (5)

which guarantees that the yield surface is tangent to the memory surface at the loading point
when the yield surface approach the memory surface. Equation (5) also guarantees that the yield
surface is tangent to the memory surface at loading point during the expansion of the memory

surface.

The total strain increment de;; is decomposed into elastic strain increment def; and plastic

strain increment def; as
dej; =def; +def , ij=11, 22, 12 (6)
when €15 =7, is the engineering shear strain.
By the associated flow rule, the plastic strain increments can be written as
def =n;d§ , in=22, 12 )
1
where ny; is the unit vector normal to the yield surface at loading point, d§ = (defjdef}) 2 s the

magnitude of the plastic strain increment which is to be determined from the hardening

properties.
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Consider the initial loacing. Define an effective stress as
5= Bio ®
and the corresponding effective plastic strain increment de as
Gde” = oyded ©

Then the effective plastic strain increment can be expressed in terms of plastic strain increments

and stress components, i.€..

o;de?
de" = —— (10)
c
Substitution of (7) into (9) yields
d§=—ji§— mn =22, 12 an
HGmnNmn

where H = d(—)'/dEp is called generalized plastic modulus of the anisotropic material. Substitution

of (11) into (7) yields

d P nijc—)'da (12)
gk = —m———
Y HOmnlmn
By expressing unit normal n;; explicitly, equation (12) can be further simplified to
def; 0 _
3 ., do
ded, r= 622 — (= 13
L7) o —) (13)
dye, | |2266012

The above equation gives the incremental form of stress and plastic strain relations for initial

loading. It is assumed that these relations are valid for all virgin deformations.
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Now, consider the reverse loading following initial loading. It is obvious that the above
effective stress is no longer a proper variable to describe hardening properties. Define an

effective stress as

G = \3f(c;; - oF) (14)

where o;j are the stresses at the starting yield point s* of the reverse loading. One may view the
stress-strain curve of the reverse loading as the superposition of the deformation during this
reverse loading to the stress-strain state at the end of initial loading. Therefore, define an

. . . -
effective plastic strain increment de ', such that
— —p *
de” = (0;j—0i;)de]] (15)
The effective plastic strain <an be expressed as

*
i = (0 — 0y;)def}
S B G B

0]

(16)

Substitution of (7) into (15) yields

dt = odo a7

H(Cmn = Omn)Nmn

where H = do /dEp is the generalized plastic modulus for reverse loading. Substitution of (17)

into (7) yields

05 Edc—s

H(Gmn = O mn)imn

def = (18)

which can be expanded explicitly into
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dE?l 0 _
dehp={ onon () (19)
dy®, 2a46(012-C112) N

The above equation gives the incremental form of stress and plastic strain relations for
reverse loading. It is assumed that these relations are valid for all non-virgin deformations. In

* . . .
that case, Gj; represent the stresses at the starting yield point of the current reversal.
3.2. Cyclic Softening Or Hardening

Usually, cyclic softening or cyclic hardening includes the change of yield surface and the
change of material resistarce to plastic deformation during the course of plastic flow. In the
present model, the cyclic -oftening is achieved by the change of generalized plastic modulus

while keeping the shape and size of the yield surface ﬁnchanged.

From the experimental results, the material response for non-virgin deformation depends on
the loading range and accumulated plastic deformation. Therefore, the generalized plastic

modulus for virgin deformation can be expressed as
= P
H =H(0, qmax, € ) (20)
Taking the generalized plastic modulus for the first reversal as reference, the generalized plastic

modulus for second and subsequent reversals is assumed to be of the form

- _-p

D) 21)
0

H(, €, Qmax) = H1(0, qmad)[1 ~ (1 — exp(—

where H; = Hl(a, Qmax) 'S the generalized plastic modulus for first reversal, ?1’ is the
accumulated effective plastic strain at the end of the first reversal, the constant ® determines the

softening rate, and the constant a characterizes the magnitude of softening.
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The generalized plastic modulus is calibrated by the experimental stress-strain curve of
unidirectional off-axis specimen. For off-axis loading, the effective stress can be expressed in
terms of applied uniaxial stress Oy, and the effective plastic strain increment can be expressed in
terms of plastic strain increment de§. By performing stress transformation and strain

transformation, and from (7), (8), (10), (14) and (16), we obtain

for virgin deformation:

o = h(8)o,

(22)

de” = del/m(8)

and for non-virgin deformation:
o = h(8)(6,—0x) .
de’ = del/h(0) @
where
3 L

h(@) = [-2—(sin49 + 2ag5in%0c0s20)] 2 (24)

The Gvs. € curve can be plotted for initial loading according to (22), which gives the
effective stress-effective plastic strain relation for virgin deformation. this curve should be
independent of off-axis angles. The generalized plastic modulus H for virgin deformation simply

equals to H = do/de’ = H(o).
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The G vs. (Ep —Ep*) curve can be plotted for first reversal according to (23), which gives the
effective stress -effective plastic strain relation for first reversal. Here ;:p* is the accumulated
effective plastic strain £ at the starting yield point of first reversal. This curve should be
independent of off-axis angles, but depend on the size of the memory surface qmax because of
the loading range effect. The generalized plastic modulus H; simply equals to

H, = do/de’ = H; (S, Gmax)-
3.3. Vanishing Yield Surface Assumption

By examining the stress-strain curve of the AS4/PEEK composite, one can find that there is
no well defined yield poirt on stress-strain curves. Nonlinearity appears gradually and starts
near the beginning of the initial loading and each reversal. In view of this, it is of practical
interest to assume that the vield surface is vanishingly small. Thus, the yield surface degenerates

into a single point which coincides with the stress state. Then the following equations exist

Qi = Oj; 25)
dU.U = dO'ij (26)

The vanishing yield surface is the limiting case when k—0 in equation (1). The unit vector
n;j can be determined by the unit normal on the memory surface at point s, see Fig. 9. Although
the yield surface degenerates to a single point, the unit normal to the memory surface is well
defined. Because doyj =do;; and from Mroz’s rule, the point s? is located as the intersection of
the extension of doj; with the memory surface. It is noted that the location of point s® depends
on the kinematic rule assumed. By using the vanishing yield surface assumption, the yield

criterion is not needed and it is not necessary to consider loading and unloading separately.
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4. Model Verification

The proposed model was applied to simulate the cyclic stress-strain response of the
AS4/PEEK thermoplastic composite at room temperature. The parameters used in the model

simulations are listed in Table 2.

The value of the anisotropy parameter agg in the plastic potential function was found to be
2.0 for both virgin and nonvirgin deformations. Figure 10 shows the effective stress-effective
plastic strain curves obtained from various off-axis specimens for virgin deformation. It is
evident that with agg = 2.0 these curves collapse into a master curve which can be fitted into the
power law € = 1.8 X 10°5"" (G in MPa). Depending on the strain range of interest, the value

of agg can be chosen between 1.5 and 2.0 and still yields reasonably good results [22-23].

Figure 11 shows the effective stress-effective plastic strain curves for the first unloading for
the off-axis specimens with the same loading range Qqmax = 148 MPa. Again, these curves
collapse into a master curve with agg = 2.0. This master curve can be fitted by the power law
(Ep —Ep‘) = AGZ'1 in which the value of A depends on gmax. Using the data for other loading
ranges, parameter A is found to be close to a linear function of qmax as shown in Fig. 12. Thus,

we have
A=0...0Qmax (X))

The simulations of the off-axis cyclic stress-strain curves with the constitutive model thus
established are plotted and compared with the experimental results in Fig. 13-18. The agreement

between the experimental results and model simulation is good.
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5. Conclusions

As a first step toward modeling the cyclic plasticity of laminate composites, the present rate-

independent constitutive model is developed for unidirectional composite based on some basic

features of the material behaviors. This model has very few material constants and is very

simple. All constants or parameters can be determined from simple off-axis cyclic loading tests.

The simplicity of this testing procedure makes it attractive for developing similar constitutive

models for composites in higher temperature environments.
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Table 1. Apparent elastic moduli and Poisson’s ratios

of different off-axis specimens at room temperatures.

Angle(Degrze) 0° 15° 30° 45° 90 °
E, (GPa 130.8 | 62.6 | 25.1 | 16.9 | 11.2
Viy 033 | 0.37 | 0.36 | 0.25 | 0.012

Table 2. Summary of parameters in the model.

Anisotropy parameter:

— P - .
7 vs. € curve for virgin deformation:

_ _p*
T VS. (?o — € ) curve for first reversal:

Cyclic softening parameters:

agg = 2.0

7 = 1.8x10°F

@ -F)=a7"

A = (0.0795 qpay — 7.37)x1078

o =0.32, w=0.01

Units: 7 and qu,, in MPa.
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Fig. 1. Schematic of anti-buckling apparatus (unit: mm).
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Fig. 2. Stress-strain curve for 15° off-axis specimen of AS4/APC-2 composite at
75°F for first 7 reversals.
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Fig. 3. Stress-strain curve for 30° off-axis specimen of AS4/APC-2 composite at
75°F for first 8 reversals.
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Fig. 4.

Stress-strain curve for 45° off-axis specimen of AS4/APC-2 composite at
75°F for first 6 reversals.
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Fig. 5. Stress-strain curve for 90° off-axis specimen of AS4/APC-2 composite at
75°F for first 8 reversals.
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Fig. 6. Stress-strain curves for 30° off-axis specimen of AS4/APC-2 composite at
75°F.
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Fig. 7.  Stress-strain curve for 30° off-axis specimen of AS4/APC-2 composite with
increasing strain range at 75°F.
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Fig. 8. Stress-strain curve for 30° off-axis specimen of AS4/APC-2 composite with

decreasing strain range at 75°F.



Fig. 9. Schematic representation of the yield surface and the memory surface. (a).
for virgin deformation process. (b). for non-virgin deformation process.
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Fig. 10. Experimental data of Evs.'e'p for initial loading and fitted curve by the
power law € = A(0)".
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Fig. 11. Experimentﬁ, d_apt.a of 7 vs. Ep——?p ) for first reversal and fitted curve by the
power law (¢ —€ ) = A(0)"; qmax = 148 MPa.
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Fig. 12.  Effect of Loading range on hardening property.
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Fig. 13. Comparison of experimental result with model simulation of stress-strain

curve for 15° off-axis specimen of AS4/APC-2 composite at 75 °F.
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Fig. 14. Comparisor of experimental result with model simulation of stress-strain

curve for 30 ° off-axis specimen of AS4/APC-2 composite at 75 ° F.
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Fig. 15. Comparison of experimental result with model simulation of stress-strain

curve for 45 ° off-axis specimen of AS4/APC-2 composite at 75 °F.
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Fig. 16.  Comparison of experimental result with model simulation of stress-strain

curve for 90 ° off-axis specimen of AS4/APC-2 composite at 75 ° F.
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Fig. 17. Model simulation of stress-strain curve for 30° off-axis specimen of
AS4/APC-2 composite with increasing strain range at 75 F.
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Model simulation of stress-strain curve for 30° off-axis specimen of

Fig. 18.
AS4/APC-2 composite with decreasing strain range at 75° F.



